Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling.

نویسندگان

  • Vicki Hammond
  • Eva So
  • Jenny Gunnersen
  • Helen Valcanis
  • Michael Kalloniatis
  • Seong-Seng Tan
چکیده

We tested the response of interneurons to the absence of Reelin signaling or p35 in the mouse neocortex. We provide three independent strands of evidence to demonstrate that layering of late-born (but not early-born) interneurons is regulated by Reelin signaling. First, early-born and late-born interneurons behaved differently in mice lacking Reelin or disabled 1 (Dab1). Early-born interneurons showed layer inversion, whereas late-born interneurons did not demonstrate layer inversion but were randomly distributed across the cortex. Second, in p35 mutant brains (in which Reelin signaling is intact), late-born interneurons are appropriately positioned in the upper layers despite the malpositioning of all other cortical neurons in these mice. Third, transplanted late-born interneuron precursors (wild type) into Dab1(-/-) cortices showed appropriate upper layer segregation. Together, these results indicate that, in the absence of Reelin signaling, late-born interneurons fail to laminate properly, and this is restored in an environment in which Reelin signaling is intact. These studies suggest different mechanisms for the stratification of cortical interneurons. Whereas the early-born interneurons appear to be associated with projection neuron layering, late-born interneurons rely on Reelin signaling for their correct lamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of cortical neuron migration and layering: cell and non cell-autonomous effects of p35.

The migration, arrest, and ultimately positioning of cortical neurons require signaling activity from Reelin as well as from cyclin-dependent kinase 5 (Cdk5). Although both molecules control neuronal positioning, they achieve their effects by quite separate molecular pathways. Cdk5 is a serine-threonine kinase, the activity of which is dependent on its activating subunits p35 and p39. Mice defi...

متن کامل

Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling.

Functioning of the cerebral cortex requires the coordinated assembly of circuits involving glutamatergic projection neurons and GABAergic interneurons. Despite their segregated origin in different regions of the telencephalon, projection neurons and interneurons born synchronically end up adopting the same cortical layer, suggesting that layer acquisition is highly coordinated for both neuronal...

متن کامل

Cortical interneurons require p35/Cdk5 for their migration and laminar organization.

Projection neurons and interneurons populate the cerebral cortex in a layer-specific manner. Here, we studied the role of Cyclin-dependent kinase 5 (Cdk5) and its activator p35 in cortical interneuron migration and disposition in the cortex. We found that mice lacking p35 (p35(-/-)) show accumulation of interneurons in the upper part of the cortex. We also observed an inverted distribution of b...

متن کامل

A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development.

The disabled 1 (Dab1) p80 protein is essential for reelin signaling during brain development. p80 has an N-terminal domain for association with reelin receptors, followed by reelin-dependent tyrosine phosphorylation sites and about 310 C-terminal residues of unknown function. We have generated mutant mice that express only a natural splice form of Dab1, p45, that lacks the C-terminal region of ...

متن کامل

Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling.

Two major signaling pathways that control neuronal positioning during brain development have been uncovered as a result of genetic and biochemical studies on neurological mouse mutants. Mice deficient in Reelin, Disabled 1 (Dab1), or both the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2) exhibit identical neuroanatomic defects in laminar structures t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2006